Iwasawa Theory and Motivic L-functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iwasawa Theory and Motivic L-functions

We illustrate the use of Iwasawa theory in proving cases of the (equivariant) Tamagawa number conjecture.

متن کامل

Motives and Motivic L-functions

This report aims to be an exposition of the theory of L-functions from the motivic point of view. The classical theory of pure motives provides a category consisting of ‘universal cohomology theories’ for smooth projective varieties defined over – for instance – number fields. Attached to every motive we can define a function which is holomorphic on a subdomain of C which at least conjecturally...

متن کامل

Motives : Motivic L - functions

The exposition here follows the lecture delivered at the summer school, and hence, contains neither precision, breadth of comprehension, nor depth of insight. The goal rather is the curious one of providing a loose introduction to the excellent introductions that already exist, together with scattered parenthetical commentary. The inadequate nature of the exposition is certainly worst in the th...

متن کامل

Iwasawa-Tate on ζ-functions and L-functions

After a too-brief introduction to adeles and ideles, we sketch proof of analytic continuation and functional equation of Riemann’s zeta, in the modern form due independently to Iwasawa and Tate about 1950. The sketch is repeated for Dedekind zeta functions of number fields, noting some additional complications. The sketch is repeated again for Hecke’s (größencharakter) L-functions, noting furth...

متن کامل

Iwasawa L-Functions and the Mysterious L-Invariant

coming from the cokernels of the rst column. These are cyclic (pro-cyclic in the limit) and are generated by the image of q t. So, lim A(K t)=NA(K n;t) = ?=< (q t ; L t =K t) > where (q t ; L t =K t) is the norm residue symbol of q t for the extension L t =K t. We write Q t for the image of (q t ; L t =K t) under the isomorphism ? ! Z p induced by sending to 1. Note that although Q t is not can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pure and Applied Mathematics Quarterly

سال: 2009

ISSN: 1558-8599,1558-8602

DOI: 10.4310/pamq.2009.v5.n1.a8